Vol.31, Suppl. March, 2004

文章编号: 0258-7025(2004)Supplement-0287-03

高灵敏探测甲烷气体的实验研究

马维光, 尹王保, 董 磊, 李昌勇, 贾锁堂

(山西大学物理电子工程学院,量子光学与光量子器件国家重点实验室,山西太原 030006)

摘要 通过外腔二极管激光器探测了甲烷位于 1.637 μm 处的 2ν₃ 带 *R*(9)支的直接吸收光谱,利用直接吸收方法只获得了 1.4× 10⁻³ 的最小探测吸收,当采用谐波探测技术时,在最佳的调制幅度下 2*f*,4*f*,6*f* 分别获得了 5.2×10⁻⁴,1.1×10⁻⁴,4.0×10⁻⁶ 的最小探测吸 收,相对于直接吸收有了很大的提高,同时谐波次数越高其探测灵敏度越高。 关键词 应用光学;直接吸收光谱;谐波探测;甲烷 2ν₃ 带 *R*(9)支

中图分类号 O561.3 文献标识码 A

Experimental Research of High-Sensitivity Detection of Methane

MA Wei-guang, YIN Wang-bao, DONG Lei, LI Chang-yong, JIA Suo-tang (College of Physics and Electronics Engineering, Shanxi University State Key Laboratory of Quantum Optics and Quantum Optics Devices, Taiyuan, Shanxi 030006)

Abstract In this paper, the direct absorption spectrum of methane $2\nu_3$ band R(9) manifold near 1.637mm was detected. The minimum detectable absorbance of 1.4×10^{-3} was achieved, while the minimum detectable absorbancies of 5.2×10^{-4} , 1.1×10^{-4} , 4.0×10^{-6} were obtained by use of harmonic detection for $2f_14f_16f$ respectively in the condition of optimized modulation. There is a great improvement relative to the direct absorbance. Meanwhile the higher is the order of harmonic, the higher is the detection sensitivity.

Key words applied optics; direct absorbance; harmonic detection; methane $2\nu_3$ band R(9) manifold

1引言

近年来,煤矿瓦斯爆炸事故不断出现,对瓦斯气体浓度不能进行实时高灵敏检测是一个重要的原因。瓦斯气体的主要成分是甲烷。激光光谱技术具有不采样、实地、快速、低功耗以及强的选择性等优点。因此拟建立一套基于激光光谱的方法探测甲烷气体的实用装备。

高探测灵敏度是通过增加吸收信号强度和降低 探测噪声的优化实现。选择强吸收线或者采用长的 吸收路径是获得强吸收信号的主要方法^[1-6]。这里提 出采用频率调制和高次谐波探测技术优化两者的结 合来探测微量气体。

频率调制是一种抑制探测噪声的非常有效的方法。它是将探测带移动到高频通过减小低频噪声(1/f) 来增加探测灵敏度。当调制频率小于吸收线半宽时, 我们称之为波长调制,反之为频率调制。由于频率 调制需要高频调制晶体以及高速响应的探测器,因此不适用于实际应用。而波长调制只需要几 kHz 的调制频率,低响应的探测器就可以,因此更适用于气体检测。本文的主要目的是通过测量甲烷 2v3 带 R(9)支吸收线的高次谐波来获得高灵敏探测甲烷气体的一种简单的方法。

2 理论分析

频率为v、强度为 $I_0(v)$ 的一束激光通过一个长为 L 的气体吸收介质,根据比尔-朗伯(Beer-Lambert) 定律

 $I(v)=I_0(v)\exp[-\alpha(v)]=L_0(v)\exp[-S\phi(v)PL],$ (1) 这里 I(v)和 $\alpha(v)$ 分别是频率为 v 的光通过气体的透 射光强和气体的吸收系数。

如果用角频率为 ω 的正弦调制信号叠加到外 腔二极管激光器的压电陶瓷上,会导致输出激光的

基金项目:国家重大基础研究前期研究专项(2002ccc02500)、山西省科技攻关项目(002096)和山西省留学基金资助课题。 作者简介:马维光,(1976-),男,山西大学物理电子工程学院博士研究生,主要从事激光分子光谱应用方面的研究。 Email: mwg@sxu.edu.cn

激

中

频率随时间变化

$$\nu(t) = \nu_0 + a\cos\omega t \tag{2}$$

而频率平均值ν₀可通过在压电陶瓷上加一个慢扫 锯齿电压实现缓慢调节。

则锁相放大器解出的 N 次谐波信号的表达式 可以近似表示为

$$I^{N} \approx I_{0}L \frac{2^{-N}}{N!} a^{N} \frac{\partial^{N}[\alpha(\nu)]}{\partial \nu^{N}}$$
(3)

3 试验装置与技术

图1是实现高次谐波探测的试验装置图。激光 源采用外腔二极管激光器(Sacher TEC500)出射波 长为 1.637 µm, 输出功率为 1.5 mW。通过改变外腔 反射镜后面的压电陶瓷的电压来实现波长的连续扫 描, 线宽小于2 MHz。激光波长的电压调节率为 0.8 GHz/V。函数发生器(Model Aglent33120)输出 一个 3.0 V (rms), 1 Hz 的锯齿波, 锁相放大器 (Stanford Research Systems Model SR830) 输出 900 Hz 的正弦信号,将两个信号叠加后通过激光控 制器的 FM 输入口(内部有十倍的放大)加在偏压为 34 V 压电陶瓷上,来完成波长扫描和调制。样品池 是一根长 31 cm、直径 3 cm 内表面镀银的密封铜 管,实验中由分子抽运(ALCATEL ATP 80/100)抽到 10⁻⁴ Pa, 充入不同气压的纯度为 99.99%的甲烷气 体, 气体压强由 Motorola MPX100 压力传感器监 测。自由光谱区为750 MHz的法布里-- 珀罗腔用来提 供频率参考。吸收信号、参考信号以及腔信号由三个 热电冷却的 InGaAs 光电探测器 (HAMAMATSU G8605-23 NEP=10-14 W/Hz12,探测带宽大于 2 MHz) 探测,时间常数设置在 10 ms。三个信号以及函数发 生器输出的同步信号分别输入到锁相放大器的信号 输入、辅助通道一、辅助通道二和触发输入端,由此

detection of methane

完成模数转换,最后由计算机进行采集。

4 结果和讨论

光

图 2 是在温度为 296 K、气压为 1000 Pa、吸收长 度为 31 cm 的条件下,利用外腔二极管激光器测量的 甲烷位于 1.637 mm 的 2v₃ 带 R(9)支的直接吸收谱, 图中圈线为实验测量结果,实线为通过多线 Voigt 拟 合的理论结果,竖直的实线利用HITRAN2K 数据库^m 的线强度和线位置作出的结果。Residual 表示测量数 据和理论曲线差值的归一化结果,用来表征实验和理 论的吻合程度,这一结果被很好的限制在小于 5%。

图 3 为纯甲烷气体在 174 Pa 和 10 Pa 条件下 的直接吸收以及二次谐波(2f)、四次谐波(4f)、六次 谐波(6f)信号。这里选择了低压下 2f 的最佳调制幅 度 1.2 GHz。从两个图中可以发现直接吸收和二次 谐波无法解出来的信号通过四次、六次可以很好的 获得,因此谐波次数的提高可以有效的增加了信号 探测的最低灵敏度。图 3(b)发现对于二次谐波具有 很强的背景干扰,而 4f,6f 的背景基本是水平的,这 主要是因为高于二次谐波有效的抑制了腔共振噪 声[®]和残余幅度调制对信号的影响,而且背景噪声 随着谐波次数的提高而很快降低。

分析试验装置的灵敏度极限将是一个很重要的 参量。通常情况下选择信噪比为一时的探测样品浓 度。在这里选择了纯的甲烷气体作为研究对象。图 4 中圆点为 1637.83 nm 处的吸收线在不同浓度下的 直接吸收(DA),2f,4f,6f 的信噪比的对比,实线为理 论计算的结果,从而获得的最小探测分子数浓度为 3.91×10¹⁵ cm⁻³,1.469×10¹⁵ cm⁻³,4.9×10¹⁴ cm⁻³,4.8×

图 3 不同浓度下甲烷吸收线高次谐波的比较。[(a),(b)分别为 174 Pa,10 Pa 纯甲烷气体的直接吸收以及 2f,4f,6f 信号] Fig.3 Comparison of the harmonic signals of different concentrations. (a) 174 Pa, (b) 10 Pa

10¹⁴ cm⁻³ 相应的最低吸收为 1.4×10⁻³,5.2×10⁻⁴, 1.75×10⁻⁴,1.72×10⁻⁴。当我们在分别采用 4f,6f 的最 佳调制时,相应的背景噪声的变化不太明显,而信号 增强,通过峰值强度与调制幅度的理论关系可获得 4f,6f 的最低吸收分别为 1.1×10⁻⁴,4.0×10⁻⁵。因此在 包括 6f 以下,谐波次数越高最后获得的灵敏度越 高,而对于更高次的谐波,由于背景噪声相对变化不 大而信号强度衰减很多以及需要更高的调制幅度, 不能采用。

参考文献

- Yotsumi Yoshii, Hiroaki Kuze, Nobuo Takeuchi. Cavity enhanced detection of molecular absorption under the scheme of wavelength modulation spectroscopy [J]. Jpn. J. Appl. Phys., 2002, 41: 5585~5589
- 2 M. G. Allen, K. L. Carleton, S. J. Davis *et al.*. Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors [J]. *Appl. Opt.*, 1995, **34**:3240~3249
- 3 D. T. Cassidy, J. Reid. High-sensitivity detection of trace gases using sweep integration and tunable diode lasers [J]. Appl. Opt., 1982, 21: 2527-2530
- 4 Daniel B. Ch, David Christian Hovde. Wavelength modulation detection of acetylene with a near-infrared external-cavity diode laser[J]. Appl. Opt., 1995, 34: 7002~7005
- 5 Wang Liangguo, D. A. Tate, Riris Haris et al.. High-sensitivity frequency -modulation spectroscopy with a GaAlAs diode laser[J]. J. Opt. Soc. Am., 1989, B6: 871-876
- 6 S. Schäfer, M. Mashni, J. Sneider *et al.*. Sensitive detection of methane with a 1.65mm diode laser by photoacoustic and absorption spectroscopy[J]. *Appl. Phys.*, B66:511~516
- 7 A. N. Dharamsi, P. C. Shea, A. M. Bullock. Reduction of effects of Fabry-Perot fringing in wavelength modulation experiments [J]. Appl. Phys. Lett., 1998, 72: 3118~3120